

Using Complexity Science in Analyzing Safety/Capacity of ATM Designs Tutorial, Part 2

Henk Blom

ICRAT 2014, May 26-29, Istanbul

Using Complexity Science in Analyzing Safety/Capacity of ATM Designs

- Motivation and background
- Complexity Science methods Part 1
- Complexity Science methods Part 2

Key Free Flight Research Question

- Free Flight (or Airborne Self Separation) has been "invented" as a potential solution for high traffic demand airspace
- ATM community research trend has been to direct
 Airborne Self Separation research to situations of less
 demanding airspace (where mid-air safety risk is coming
 from pairwise encounters only)
- Key research question: Up to which traffic demand can Free Flight be designed sufficiently safe?

Safety/capacity analysis feedback to future ATM design

Tutorial Part 2

- Autonomous Mediterranean Free Flight (AMFF)
- Probabilistic Reachability Analysis
- Results for AMFF
- Advanced Airborne Self Separation (AASS)
- Results for AASS

Autonomous Mediterranean Free Flight (AMFF)

- Future concept developed for traffic over Mediterranean area
- Aircrew gets freedom to select path and speed
- In return aircrew is responsible for self-separation
- Aircraft broadcast their states without delay to other aicraft
- Each a/c equipped with an Airborne Separation Assistance System
- In AMFF, conflicts are resolved one by one (pilot preference)
 - Medium term: priority a/c does nothing
 - Short term: both aircraft resolve conflict

Evaluations performed for AMFF concept

- Real-time pilot-in-the-loop evaluations
- Eurocae/RTCA ED78a safety assessment

Development of Agent Based Model

- Defining the relevant Agents
- Hazard identification
- Developing Petri net for each Agent
- Connecting Agent Petri nets
- Generate Monte Carlo simulation model
- Parametrization, Verification & Calibration

Agents in AMFF

Top View ac paths 80 0 60 40 20 0 (1) 1 -20 -40 0 -60 -80 -80 -20 0 Nm 20 60 -60 40 -40 80

AMFF

Run #1

AMFF

Run #2

AMFF

Run #3

Tutorial Part 2

- Autonomous Mediterranean Free Flight (AMFF)
- Probabilistic Reachability Analysis
- Results for AMFF
- Advanced Airborne Self Separation (AASS)
- Results for AASS

Size of AMFF agent-based model

Agent	# of product places	Maximum colour Product state space
Aircraft	24^N	R^{13N}
Pilot-Flying (PF)	490 ^N	R^{28N}
Pilot-not-Flying (PNF)	7 ^N	R^{3N}
AGNC	$(15\times2^{16})^N$	R^{45N}
ASAS	48 ^N	$R^{37N+21N^2}$
Global CNS	16	R^0
PRODUCT	$\approx 16 \times (3.88 \times 10^{12})^N$	$R^{126N+21N^2}$

Model Power Hierarchy

[0]: [Ajmone Marsan et al, 1984]

[1]: [Malhotra & Trivedi, 1994], [Muppala et al, 2000]

[2]: [Davis, 1984]

[3]: [Everdij & Blom, 2005]

[4]: [Bujorianu & Lygeros, 2006]

[5]: [Everdij & Blom, 2006]

Bisimulation

- Two systems are bisimulations when their executions are equivalent in probabilistic sense
 - VanDerSchaft, 2004; Bujorianu et al., 2005
- Systems with GSHP executions:
 - SDCPN = Stochastically and Dynamically Coloured
 Petri Net
 - GSHS = General Stochastic Hybrid System
 - HSDE = Hybrid Stochastic Differential Equation

SDCPN inherits analysis power of SDE's and formal verification power of automata

[4]: [Bujorianu & Lygeros, 2006] [6]: [Everdij & Blom, 2010]

[5]: [Everdij & Blom, 2006] [7]: [Everdij, 2010]

Approaches in Reach Probability Computation

- Markov Chain (MC) approximation (Prandini&Hu, 2006)
- Dynamic Programming (DP) approach (Abate, Amin, Prandini, Lygeros & Sastry, 2006)
- Interacting Particle System (IPS) approach (Cerou et al., 2005)

Interacting Particle System (IPS)

- Define a sequence of conflict levels decreasing in urgency $(D_k 's)$
 - Most urgent level represents collision $(D_m = D)$
- Simulate N_p particles; initially all outside D_1 (less urgent level)
- Freeze each particle that reaches the next urgent level before T
- Make N_p copies of frozen particles
- Repeat this until the most urgent level has been reached
- Count the simulated fraction $\tilde{\gamma}_k$ that reaches level k
- Estimated collision risk = $\tilde{\gamma}_1 \times \tilde{\gamma}_2 \times \tilde{\gamma}_3 \times ... \times \tilde{\gamma}_m$

IPS convergence

Cerou, Del Moral, Legland and Lezaud (2002, 2005) have shown that the product of these fractions $\tilde{\gamma}_k$ forms an unbiased estimate of the probability of $\{s_t\}$ to hit the set D within the time period [0,T), i.e.

$$\mathbb{E}\left[\prod_{k=1}^{m} \widetilde{\gamma}_{k}\right] = \prod_{k=1}^{m} \gamma_{k} = P(\tau < T)$$

In addition there is a bound on the \boldsymbol{L}^1 estimation error, i.e.:

$$\mathbb{E}(\prod_{k=1}^{m} \tilde{\gamma}_{k} - \prod_{k=1}^{m} \gamma_{k}) \leq \frac{c_{p}}{\sqrt{N_{p}}}$$

Hybrid IPS versions

- 1. Importance switching (Krystul&Blom, 2005)
- 2. Rao-Blackwellization, using exact equations for $\{\theta_t\}$ and particles for Euclidian state (Krystul&Blom, 2006)

- Both handle rare mode switching well
- Large scale SHS scalability problem remains
 - Huge number of discrete product places

Hierarchical Hybrid IPS (HHIPS) (Blom, Bakker & Krystul, 2007, 2009)

✓ Define an aggregated mode process $\{\kappa_t\}$ with $\{M_k, \kappa \in \mathbb{K}\}$ a partition of M

$$\kappa_t = \kappa \text{ if } \theta_t \in M_k$$

- ✓ Apply Importance switching to $\{\kappa_t\}$
- \checkmark Rao-Blackwellization, i.e. use exact equations for $\{\kappa_t\}$ and particles for the other process elements $\{\chi_t, \theta_t\}$

Tutorial Part 2

- Autonomous Mediterranean Free Flight (AMFF)
- Probabilistic Reachability Analysis
- Results for AMFF
- Advanced Airborne Self Separation (AASS)
- Results for AASS

Scenarios

- Two aircraft encounter
- Eight aircraft encounter
- Random traffic

Sequence of conflict levels for air traffic

Medium Term Conflict (MTC)

Two-aircraft encounter and dependable technical systems

Two-aircraft vs. eight-aircraft encounter

Eight-aircraft encounter: Baseline PF response vs. Fast PF response

Random traffic, high density

- Eight aircraft per packed container
 - 3 times as dense above Frankfurt on 23rd July '99

Random high traffic: Uncontrolled vs. AMFF controlled

Tutorial Part 2

- Autonomous Mediterranean Free Flight (AMFF)
- Probabilistic Reachability Analysis
- Results for AMFF
- Advanced Airborne Self Separation (AASS)
- Results for AASS

Advanced Airborne Self Separation ConOps considered

- Aircraft plan conflict-free 4D trajectories
 - Reference Business Trajectory (RBT)
- Each a/c broadcasts its current RBT and its destination to other aircraft
- SWIM transfers this over-the-horizon.
- Conflict detection and resolution take all aircraft into account
 - Medium Term (5-15 mins)
 - Short Term (3-5 mins)
- Tactical Separation Minima is down from 5Nm to 3 Nm
 - Stemming from RESET project

NASA research on Advanced Airborne Self Separation ConOps

- Basic concept has been developed by NASA [NASA, 2004]
 - This includes ConOps extension for non-equipped aircraft
 - Has recently been published [Wing and Cotton, ATIO-2011]
- Extensive study of planning layer
 - Under nominal conditions [Consiglio et al., ATIO-2007]
 - Effect of pilot response delays [Consiglio et al., ATIO-2008, ICAS-2010]
 - Effect of large wind deviations [Consiglio et al., ATM-2009]
 - Planning layer absorbs all but large wind deviations (60 kts)
- Follow-up Research Question:
 - Can the tactical layer resolve this safely?

Medium Term CD&R approach

- Each aircraft detects conflicts (5NM/1000ft) 10 min. ahead
- a/c nearest to destination has priority over other a/c.
- a/c with lowest priority has to make its 4D plan conflict free (15 min ahead) with all other plans.
- Undershooting of 5Nm/1000ft is allowed if there is no feasible conflict free plan and it does not create a short term conflict.
- Then such aircraft broadcasts its non-conflict-free 4D plan together with a message of being "Handicapped" (which is priority increasing)

Velocity Obstacles (Collision Cones) Medium Term (10 min & 5 Nm)

Velocity Obstacles (Collision Cones) Medium Term (10 min & 5 Nm)

Velocity Obstacles (Collision Cones) Medium Term (10 min & 5 Nm)

Short Term CD&R approach

- a/c which detects conflict is obliged to resolve the conflict without awaiting any of the other aircraft
- Course change is identified using Velocity Obstacles (3 min. ahead)
- Conflict free means 3Nm/900ft minimal predicted miss distance
- Undershooting of these values is allowed if there is no feasible alternative
- a/c broadcasts its new course or rate of climb/descend

Velocity Obstacles = Collision Cones Short Term (3 min & 3 Nm)

Agents in Airborne Self Separation

Run #1

Run #2

Run #3

Tutorial Part 2

- Autonomous Mediterranean Free Flight (AMFF)
- Probabilistic Reachability Analysis
- Results for AMFF
- Advanced Airborne Self Separation (AASS)
- Results for AASS

Traffic Scenarios

- Two aircraft encounter
- Eight aircraft encounter
- Random traffic high density

2 a/c, varying ASAS dependability

8 a/c versus 2 a/c

Safety related events

8 a/c, varying ASAS dependability

8 a/c, STCR separation back to 5 Nm

Random Traffic Scenarios

- Periodic Boundary Condition
- Eight a/c per packed box/ no climbing or descending a/c
- Vary container size in order to simulate:
 - 3x as dense as high density area in 2005
 - 6x as dense as high density area in 2005

Random traffic: 3x and 6x 2005

Tactical Separation: 5Nm and 3Nm

3x high 2005 random traffic

3x high 2005 traffic + wind error 10/ 20/ 30 m/s

Conclusions

- MFF project showed: Pilots like it, if they know that ASAS supporting systems are dependable
- Dependability requirements have been identified using RTCA DO-264 (=EurocaeED78a) and rare event MC simulations
- Agent Based Modelling & Simulation shows: It can safely accommodate very high en route traffic demands at current separation minima
- To safely accommodate 3x traffic of 2005, Tactical Separation distance can stay at 5 Nm
- Other aspects have been addressed in complementary studies
 - CD&R algorithms more advanced than Velocity Obstacles
 - Cost Benefit

Using Complexity Science in Analyzing Safety/Capacity of ATM Designs

- Motivation and background
- Complexity Science methods Part 1
- Complexity Science methods Part 2

Questions / Discussion

Validation of assessed risk level

- Simulation model ≠ Reality
- Identify the differences
- Assess each difference individually (and conditionally)
 - use of statistical data and expert knowledge
- Assess model parameter sensitivities by Monte Carlo simulations
- Evaluate effect of each assumption at simulated risk level
 - use of statistical data and expert knowledge
- Evaluate combined effects of all model assumptions
 - Typical output: expected risk and 95% area
- Improve simulation model for large differences

