

Can ground-based separation accommodate very high en route traffic demand as well as advanced self-separation?

Henk Blom

National Aerospace Laboratory NLR

Delft University of Technology

Can ground-based separation accommodate very high en-route traffic demand NLR Air Transport Safety Institute Research & Consultancy Research & Consultancy

- Advanced Self Separation: A3 ConOps
- Rare event Monte Carlo simulation results
- Ground-based version of A3 ConOps
- Rare Event simulation differences
- Conclusions & Follow up

Advanced Self-separation: A3 ConOps

Aircraft plan conflict-free 4D trajectories

Trajectory Based Operation (TBO)

Each a/c broadcasts its current 4D plan and its destination to other aircraft

SWIM transfers each 4D plan over-the-horizon

Conflict detection and resolution take all aircraft into account

- Medium Term (5-15 mins)
- Short Term (3-5 mins)

Flow Control and ACAS are out of the scope of this research

Medium Term CD&R approach NLR Air Transport Safety Institute

Each aircraft detects conflicts (5NM/1000ft) 10 min. ahead.

a/c nearest to destination has priority over other a/c.

a/c with lowest priority has to make its 4D plan conflict free (15 min ahead) with all other plans.

However, undershooting of 5Nm/1000ft is better than doing nothing if there is no feasible conflict free plan. It should not create a short term conflict.

Then, the aircraft broadcasts its non-conflict-free 4D plan together with a message of being "Handicapped" (which is priority increasing).

Short Term CD&R approach

a/c which detects conflict is obliged to resolve the conflict without awaiting any of the other aircraft.

Course change is identified using Velocity Obstacles/Conflict Cones (3 min. ahead).

Conflict free means 5Nm/900ft minimal predicted miss distance.

However, undershooting of these values is better than doing nothing if there is no feasible alternative.

Then, the a/c broadcasts its new course or rate of climb/descend.

Agent Based Stochastic Model of A3 ConOps

Run #1

Run #2

Top View ac paths Run #3 80 60 40 20 R -20 -40 -60

-20

-40

0 Nm 20

60

80

40

-80

-80

-60

Can ground-based separation accommodate very high en-route traffic demand NLR Air Transport Safety Institute as well as advanced self-separation? Research & Consultancy

- Advanced Self Separation: A3 ConOps
- Rare event Monte Carlo simulation results
- Ground-based version of A3 ConOps
- Rare Event simulation differences
- Conclusions & Follow up

Random Traffic Scenarios

Periodic Boundary Condition

Eight a/c per packed box/ no climbing or descending a/c

Vary container size in order to simulate:

- 3x as dense as high density area in 2005
- 6x as dense as high density area in 2005

3x high 2005 random traffic

3x high 2005 traffic + systematic wind error

What happens when RBT's are not broadcasted?

Positive Emergent Behaviours identified for the A3 ConOps

- 1. A proper tactical conflict detection and resolution layer makes it possible for the pilot to resolve tactical situations under which its 4D plan has lost the conflict-free quality.
- 2. There appears to be no need to keep centerlines of conflictfree 4D plans further away from each other than the tactical separation minimum.
- 3. In addition to safely accommodating 3x busy en-route 2005 traffic demand, above this level no phase transitions: flight efficiency deteriorates in a gradual way.

Can ground-based separation accommodate very high en-route traffic demand NLR Air Transport Safety Institute as well as advanced self-separation? Research & Consultancy

- Advanced Self Separation: A3 ConOps
- Rare event Monte Carlo simulation results
- Ground-based version of A3 ConOps
- Rare Event simulation differences
- Conclusions & Follow up

A³G ConOps: NLR Air Transport Safety Institute Ground based version of A³ ConOps Research & Consultancy

The A³G Concept of Operations (Conops):

En-route Trajectory Based Operation controlled from ground-based Air Traffic Centre (ATC)

Each aircraft flies according 4D trajectory plan:

4D trajectory plans are generated and instructed by ATC

ATC ground detects and resolves conflicts:

- Between 4D trajectory plan
- Tactical conflict resolutions (using 4D pplan and state information)

Each aircraft broadcasts 4D plan that is active in its FMS

NLR Air Transport Safety Institute Research & Consultancy

A³G ConOps MTC resolution process

NLR Air Transport Safety Institute Research & Consultancy

A³G ConOps STC resolution process

Can ground-based separation accommodate very high en-route traffic demand NLR Air Transport Safety Institute as well as advanced self-separation? Research & Consultancy

- Advanced Self Separation: A3 ConOps
- Rare event Monte Carlo simulation results
- Ground-based version of A3 ConOps
- Rare Event simulation differences
- Conclusions & Follow up

A³G model assumptions have been taken from A³ model

- A0. All aircraft fly on the same altitude
- A1. All aircraft are identical and have the same speed
- A2. No emergency situations considered
- A3. ATC works without SSR or Primary Radar, i.e. ADS-B/C only
- A4. ATC considers an FMS-unconfirmed 4D plan unreliable
- A5. No ground based navigation support, i.e. GNSS/IRS only
- A6. Reliability and availability of ground system equal to ASAS
- A7. Mean duration of global uplink being down is 1 hour

A³ model versus A³G model for 2 opposite a/c encounters NLR Air Transport Safety Institute (both using their baseline parameter values) Research & Consultancy

A³ model results

A³G model results

By improving its parameter values, the A³G Model can produce the NLR Air Transport Safety Institute same results as the A³ Model for 2a/c

Parameter	Effect	Due
Airborne GNSS receiver failure	Significant	A 5
ADS-B transmitter failure	Large	A4
ATC ground system mode failure	Large	A6
ADS-B ground receiver failure	Large	A3
Global ATC Uplink occupied	Large	A7
ATCo Planning response time	Negligible	-
ATCo Tactical response time	Significant	-
Uplink transmitter sending duration	Large	-

Research & Consultancy

Why is the uplink delay so critical?

Pilot delay: Rayleigh density

Mean delay: 5.6 s

Pilot + Uplink delay Shifted Rayleigh density

Mean delay: 5.6 s + uplink delay

What happens in the tail of the latter density?

Once per 5000 encounters of 2 a/c:

Too much delay between ATCo STCR decision and Pilot implementation

Hence a/c deviates too much from 4D plan; which triggers new STCR activity, etc.

A³G problems further deteriorate for 8a/c encounters

Very challenging parameter value requirements:

- ATCo-Planning very fast response (1 second)
- ATCo-Tactical very fast response (1 second)
- Uplink transmitter small delay (1 second)
- Pilot very fast response (1 second)

These are not practically realizable values!

Hence the evaluated A3G model is not a practically feasible option.

Can ground-based separation accommodate very high en-route traffic demand NLR Air Transport Safety Institute as well as advanced self-separation? Research & Consultancy

- Advanced Self Separation: A3 ConOps
- Rare event Monte Carlo simulation results
- Ground-based version of A3 ConOps
- Rare Event simulation differences
- Conclusions & Follow up

Conclusions

- For the A³G model it appears possible (in theory) to produce similarly positive emergent behaviours as the A³ model does.
- However this theoretical solution asks for parameter values that are practically unrealistic.

Follow-up:

- ATM ConOps design experts have identified practically feasible ways to improve the A³G ConOps
 - EMERGIA report D3.1 on http://emergia.nlr.nl
- Agent-based modelling and rare event MC simulation of an improved A3G model.

Questions?

